Quarter 2 (in progress): Physical Science Units


7.P.1.1 (Describing Motion) Explain how the motion of an object can be described by its position, direction of motion, and speed with respect to some other object.

7.P.1.3 (Forces and Motion) Illustrate the motion of an object  by using a graph to show a change in position over time

7.P.1.4 (Forces and Motion) Interpret distance versus time graphs for constant speed and variable motion.


7.P.1.2 (Forces and Motion) Explain the effects of balanced and unbalanced forces acting on an object (including friction, gravity and magnets)

UNIT 7: ENERGY (Types and Transformation)

7.P.2.1 (Energy) Explain how kinetic and potential energy contribute to the mechanical energy of an object

7.P.2.2 (Energy: Conservation and Transformation) Explain how energy can be transformed from one form to another (specifically potential energy and kinetic energy) using a model or diagram of a moving object (ex. roller coaster, pendulum, or cars on ramps)

UNIT 8: ENERGY (Transfer, Work & Simple Machines, includes circuits)

7.P.2.3 (Energy: Conservation and Transfer) Recognize that energy can be transferred from one system to another when two objects push or pull on each other over a distance (work) and electrical circuits require a complete loop through which an electrical current can pass.

7.P.2.4 (Energy: Conservation and Transfer) Explain how simple machines such as inclined planes, pulleys, levers and wheel and axles are used to create mechanical advantage and increase efficiency.

Quarter 1: Earth Science units

UNIT 1: Doing Science Safely


7.E.1.1 (Earth Systems, Structures and Processes) Compare the composition, properties and structure of Earth’s atmosphere to include mixtures of gases and differences in temperature and pressure within layers.


7.E.1.6 (Earth Systems, Structures and Processes) Conclude that the good health of humans requires: monitoring the atmosphere, maintaining air quality and stewardship.


7.E.1.2 (Earth Systems, Structures and Processes) Explain how the cycling of water in and out of the atmosphere and atmospheric conditions relate to the weather patterns on Earth

7.E.1.3 (Earth Systems, Structures and Processes) Explain the relationship between the movement of air masses, high and low pressure systems, and frontal boundaries to storms (including thunderstorms, hurricanes, and tornadoes) and other weather conditions that may result.


7.E.1.4 (Earth Systems, Structures and Processes) Predict weather conditions and patterns based on information obtained from: • Weather data collected from direct observations and measurement (wind speed and direction, air temperature, humidity and air pressure) • Weather maps, satellites and radar • Cloud shapes and types and associated elevation

7.E.1.5 (Earth Systems, Structures and Processes) Explain the influence of convection, global winds and the jet stream on weather and climatic conditions.

*fronts images source https://socratic.org/questions/what-are-the-main-types-of-fronts

Unit 2: Atmosphere & Weather tutorial page

Structure and Composition

Structure and Composition lecture video (20 min)


High and Low Pressure  (Thanks ID for sharing this link!)


Air Masses and Fronts

Image result for cold warm stationary and occluded fronts

La Nina/El Nino & Air Masses and Fronts by EIU– I really like how this site has pictures of weather maps alongside pictures explaining how different air masses form each kind of front.  Scroll down to see this.



Coriolis Effect

Coriolis effect on atmospheric circulation.


Why does wind get deflected RIGHT in the Northern hemisphere and storms spin COUNTER-CLOCKWISE in the Northern hemisphere?  This video explains why.



Family STEAM Night

Image result for steam night

Family STEAM Night

(Science Technology Engineering Art Math)

Thursday, May 11, 2017

5:00-6:30 pm

Math Games!  Estimation Station!  Drumming!

Science Experiments!  Wood-Shop!  Building Activities!

Line Dancing!  Raffles!  Refreshments and More…